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PRIMARY CREEP IN THICKWALLED SHELLS

by

B. Einarsson
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SUMMARY

An analytic study of the problem of primary creep in thickwalled spherical and cylindrical shells is given,
Particular emphasis is placed on the asymptotic phase and an explicit expression for the additional displace-
ment, due 10 statical primary creep, is obtained. A numerical method for both primary and secondary creep
i3 ourlined.

1. Introduction.

The problem of primary creep in spherical and cylindrical shells, with
an internal pressure applied instantaneously, has been treated by several
authors. A numerical method for the cylindrical case has been given by
Besseling [[1], but in the numerical results presented, the material ex-
hibits only secondary creep. Analytic studies have been given by Hult [2]
and Rosengren [3]. In [2] the initial phase is considered, and an expan-
sion valid for small times is given. The asymptotic case for a thinwalled
spherical shell with only secondary creep is treated with a perturbation
method. This method was extended by Rosengren to include also primary
creep 1n cylindrical vessels.

2. Basic equations fov sphevical shells.

The total strain tensor e; is the sum of the elastic strain tensor €(ije)

(c)

; ¢ : S
and the creep strain tensor €ij The elastic strain is governed by Hooke's

law
(e 1+u 2
Eij = E Oij ~ E Okk 6ij 3 (l)

while the creep strain is assumed to satisfy

() n-1
3611- . 3 K % S s (2)
ot 2 €(ec)m 1

cf. Odgvist and Hult [4] The quantities K, m and n are non-negative
constants withx = n/ (m + 1) » I for a large number of mstals. The case
m = 0 applies to secondary creep. The stress deviation tensor 5ij, the
effective stress o. and the effective creep sirain e(ec) are defined by

o

- 1
Sii T oy T ® Ok by (3)
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3
0? = 5 Sij - Sy (4)
(c)2 2 (o) (<)
€e = —3 Eij . eij (5)

The spherical shell, which is loaded by an internal pressure p, is charac-
terized by spherically symmetric stress and strain tensors, depending only
on radius r and time t. The principal directions are indexed r, t, t (ra-
dial and tangential). The strain components are

du
& T3y (6)
and
u
€ T (1)

where u(r, t) is the radial displacement of a particle initially at radius r.
The equilibrium conditions give

— - = (0, -0;) = 0. (8)

The initial condition is

49 (r, 0) = 0, (9)
while the obvious boundary conditions are

og(a,t) = - p (10)
0, (11)

g, (b, t)

where a and b are inner and outer radius of the sphere.
The problem defined by equations (1) - (11) will now be solved.

Since there is no creep strain at the first moment, the Lamé solution is

valid as initial conditions for oj; and €,

r-3 - p-3
o, (r,0) = - p—mm— (12)
a-3 - b3
3 r3 + b3
o, (r,0) = p—— (13)
q-3 - b3

pa  (l+y) a® + 2(1-2u) b3

u(a, 0) (14)

oE as - b3
From (2) follows

elg)

=0
ot
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and hence from (9)
c) ..

expressing the creep strain incompressibility. We now consider the total
sirain sum

TS (@ = ¢ley o L1-2u '
U T e T e T S TTE Ok (16)

where we have used (1). By equations (6) and (7) we obtain

ou |, u _ 1-2u
‘a—;‘r 2";- ——E—-O'kk. (17)

We now use the equilibrium equation (8) to express the sum o, in terms
of o.(r,t), which gives

3g,+r_|. (18)

The radial displacement is thus given by

ur,t) = S22 e o (r,1) + 20, (19)

with F(t) as unknown integration constant. From the stress tensor we ob-
tain the effective stress

O, = 0.~ 0, (20)
and with (8) we get

1 o0
6 == 1 — . (21)
© 2 ar

We now express the remaining quantitics of (2) in terms of a, and F(t).
The tangential creep strain et“' is given by
1+u

(o) - - eley = 3 17 H
€ € €L r E % + E Ukk' (22

Equations (8) and (19) give

F(t) o
(o) _ 1 r .
¢ = 5 + b¥o (u=1) r — (23)
r or

We now consider the stress deviation s, and get

do
o = 1 I o, T T oy
S * 0O, 3 Ok = 3 {o, o) — . (2H)
ar
The only remaining quantity of (2) is ¢/% , which is obtained from
@2 -2, (o2 45 2 -
SR RRICHRIEICEpY (25)
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From (15) follows
off = €% 2 ¢{9=0, (26)

and hence (25) takes the form
e = 2 (27)
We now consider (2) in the tangential direction and obtain

F(t) 9o |m*L

0 1 r ~(n+m+1)
o — 5= (u-1) r— = (m+1)- K- 2 o(r
ot |~ 3 ' 2E or or

T \n

(28)

This differential equation together with the boundary conditions (10) and (11)
and the initial conditions (12) and (14) defines a mixed initial-boundary value
problem for the functions o, (r,t) and F(t).

3. Equations for cylindvical shells.
The derivation of the equation corresponding to (28) in the case of internal

pressure in a cylindrical vessel has been given by Rosengren [3] in the
case of Poisson's ratio u=1/2. With earlier symbols we get

f(t) dg |mtl n+m+l BYes
9 PR 3 ! = 3 2 I, 0
2 “ZE T | 7 (K (5) 7 e 5N 29
% | 2 4B T 5 4 o (29)
where
1
3.P
f(0)y = 55 - (30)
2 B a?- p2
b2 -~ -2
o(r,0) = 31
(r,0) = p = e (31)
o(a,t) = - p (32)
o (b,t) = 0. (33)
The other principal stresses are given by
acr
O't(r,t) =o(r,t) + r — (34)
or

and
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1 oo,
o (r,t) = g (r,t) +5r— .
ar.

The radial displacement is defined by

u(r, t) =%. f(t) .

127

(35)

(36)

We now introduce some new definitions in order to avoid unnecessary con-

stants.

o(x, T) =—é— . o (r,t)

1
gr) =5 =)
a

3 n-m-1 E , mtl
6 = (mtl) () 2 Kep' L ()
p
2/x

1 -

.. 0_.m+1 (2 c )x 1
A 24

X = r/a
c = b/a

Introducing these new quantities in (29) - (33) we obtain

g(7) m+1 n
) [_ - x @.} = (x _8_0)

56 x2 ox ox
2¢2
g(0) =
c? -1
C .2
1 - ()
o(x,0) =
e -1
o(l, 7y = -1
o(c,T) =0 .

We . now introduce two new unknown functions w(x, T) and y(x, T) by

w(x,T) = glm) - X Bo(x, 7)

ax
and

2 %A T ¥(x, 7) - 2/%

- . +
AN g 2 2

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)
(46)

(47)

(48)

(49)
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Originally we obtained the first term of (49) from the discussion in [3]
on the stationary state and the other two terms from expanding w(x, 7) =
Yo &7+ y, &)+ y; x) % + ... . We now use (49) as an attempt, where
it remains to prove that y(x,7) is bounded. In fact, we will prove that
y(x,7) tends to a constant when 7 tends to infinity.

Dividing (48) by x and integrating from x =1 to X = ¢ we obtain, to-
gether with the boundary values for o(x, 7),

2¢c? £
gr) = —— . (1 + | Wl gyy (50)
cz -1 *
1

After some elementary calculations we get a pure initial value problem
for y{x, 7)

n

1+x

) 2¢2  f yE,7)

242/ J & -y, 7)
) c? -1 g3 ]
dOy(x, 7) - 1+ 1

aT - ) YR (51)
I:l Ty - xTT )]
for 7 > 0,
yx,0 = x (52)
dy(x,0) _ N (53)

The desired functions g(7) and o(x, 7) may be expressed in terms of y(x, 7).
The displacement is given by

[

. /A 202 y(&,7) 50
T) =— . - T + d 54
g(r) =— Cm_l( 02—11 " £)
and the stress by
1 - (£ )'1/:\
olx, 7) = ____\__._+
A1
- ) =
1 (55)
1 -
9 C2/>\ x” j y(g: T) ; y(E; T)
5 — dg - J g p
A CL/)\— 1 T 1 ES ;_:73
1 - 1 1
L J

We assume X > 1 (if X = 1 we get the trivial case vix,t) = 1 ).
We first discuss the case of secondary creep (m = 0).
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The denominator of (51) is then identically equal to 1l and the right hand

member is a function F‘[x,y,z] = - 4[4 x-2R2 L (z-y)]" with
2¢t  Fy(E)
7 = —— ——d§
" -1 g’
2¢°  § dE
Since —— — 1 we find thait z is a mean-value of y(x) and that
C.’2 - 1 E

F‘[xjy(x))z] is negative at the maximum points of y(x) and positive at
the minimum points. Using this property, it is possible to prove that the
soiution y{x, 7) of the initial-value problem tends to a constant y, when
7 tends to infinity,

We now discuss the more interesting case m > 0, where we will prove
not only that v(x,7)— y, when 7 -— « , but also obtain the value of the
constant v, in closed tform.

By considering the sign of the derivative and the initial conditions we
find 1 € y(x,7) €c¢*~/* for all x and 7. In order to find the value of y_,
we expand y(x,7) in terms of L. We introduce a function y*(x,7) by

-

Yy, T) 5 oy, I%;l—:— {X“/}‘ - Yoo Xg—g/}\} + oy, 7) (56)
where

. ”—'_/,\_ Cz/,\

= if x4 2 (57 a)

Y }L—Z C;—‘/}\ -1
and

¢ . _

Yoo = s 1r} C if x = 2. (67 b)

Since

£l
j — {x4-4/>\ — xf“l”‘}dx - 0 (58)
X-S

we obtain from equation (51), after expanding in powers of 1 and using the
fact that y"(x, 7) is bounded, T

Ay (%, ) - [ S ey ]
57 1 +(1 = y (&, 1) ]
B INs] T n
X“_T_//\ {Z‘(,T) _ y‘(X, T)} 1
1+ +0 (—2), (59)
m JREUSY T
P T Be m
where
2c2 ¥y (x,7T)
27 (7) = — J — di. (60)
c- -1 2

We now consider only maxima with respect to x and get
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. C
Q%Q«—%rmﬂ+4; (61)

T

for x € X, . ("(x,7)), (the maximum points with respect to x) where o
is a fixed positive number. We now compare with the solution of the or-
dinary differential equation

- C
dy _ m 0
—T"‘ -—TY(T) + 3 2 (62)
T
which is
-
C cC
S0 1 m 1
7_11] m -1 T
Y(7) =1 (63)
¢ G
—+—1In 7 m= 1.
T T :
It may now be proved that
C-/’Tm m < 1
« C
|y &, 7)€ —In 7 m = 1 (64)
£ m> 1
p

AN

We have thus proved that y*(x,7) tends to 0 when 7 —e, which gives
by equation (56) that y(x,7) » y,, with the value of y_, given by (57).
By a refined technique we obtain

i 1
0(—) 0 <m <1
7-1'11
. -l-r—l—(li-—) + O(—l—) m = 1
1 1+7 T
.
yx,7) ={—X + 0(—) 1l <m <2 (65)
1+'T 7-11]
ye In 7
—+ 0 ) m = 2
1+7 T
}',‘" ]_
L 4 O(—‘) m > 2
1+7 ™
N

where y°1° is a constant (forr m = 1 it is easy to prove yl°° < 0).

From equation (54) we now get the asymptotic displacement
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5 c2iX 5 et~ ot y
(1) = 7 .= + - . if A A2 (66 a)
ggo A C‘Z/}\ -1 A.(A. - 2;) (C?‘/)\ _ 1)44
and
_ C Cc 2 . _
8u{7) = 7 . =+ (). Inc if x o= 2, (66 b)

The value of g  (0) is of special interest and is given below expanded in
terms of A = ¢ - 1.

1 3 1 o (-1)? 2 :
g,000 = R |1 +5 a4+ a4+ A+ 0(a%) | (67)

3

This result will be compared with the initial value (44)

2e 1 3 1 5
g(O) = § = —Z[l +-§-A +'4—A2+ O(A) ] . (68)
ce -1

From (55) and (56) we get the asymptotic stress

1= (&

c/N
which is a well-known result.

For m > 2 we obtain

2/ ( - 1
2 Y
g(7) = Tty +t— + 0(-_)) (70)
L 1+7 ™
and
C\2/2 : r ‘
L=, e y x=VA L 1
O(X,T)Tf—+—m?———. v, (1 S i) P + 0(—)
A~ 1 RN | A -2 72
if X £ o2, (71 a)
c
: X 1 m c
olx, ) = + plPl
c -1 1+ 7 2(m+1) c-1
(71 b)
e 1
. In ¢ (1 -—) - In x + 0(—)
C -
ifx -2

Corresponding formulas may be derived for other wvalues of m.
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4. Numevrical procedure.

The following initial-value problem is to be solved in the semi-infinite
strip 0 € x €1, t =0

1

3y(>;£t): F [x,t,y(x,t), / u(8)y(8,1)ds ] (72)
0

y(x,0) = y, () )

The functions F[X,t,y,z]and y (x) have continuous (partial) derivatives of
the first order and w(x) is non-negative and continuous. By considering the
Banach space of continuous functions y(x) on 0 < x £1 with the maximum
norm we can use the existence and uniqueness theorem for the ordinary
differential cquation on a Banach space (see Kato [5]) to prove the exis-
tence of a unique solution of the integro-differential equation in the region
0g x<1, V<t T

In order to show that y(x,t) = y, when t — oo we introduce the property
C by the following
Definition. The function F[x,t,y,z] has the property C if:

I F[x,t,y,z] is independent of t,
and
1
20, with z = j u(x)y(x)dx the following inequalities hold for all y(x)
0
Flx,y,z] <0 for xeX,  (¥)
Fx,y,z] >0 for xeXyg, (¥)
Flx,v.z] =0 if y(x) is constant
where
Xyne ) = { X | y(x) = Max y(x), y(x) not constant }
- 0gxgl
Xy W) = { X ‘ y(x) = Min y({x), y(x) not constant }
Osxgl

We then have the following theorerh, which is proved in an unpublished
report.

Theorem. If F has the property C and if y(x,t) is the solution of the ini-

tial value problem then Max y(x,t) is a decreasing function of t. If in ad-
Oexe¢l

dition F! [x,y(x,t),z(t)] <- € <0 for all xe [0,1] and all t > 0 then y(x,t)

tends to a constant when t = o,

The numerical procedure used tc obtain the solution is the Runge-Kutta
method. To determine the integral we need a quadrature formula, that
preserves the property € to the discrete case., We therefore construct a
formula analogous to Simpson' s rule by requiring

a+h

yx)
j S dx = b y(a-h) + byy() + byyla+h) + R(y), (74)
a=~h ' :

with R(y) = 0 for y = 1, x and x% We gei
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. h(a+h) 8 1 -_l_ . ath
g5 " h.aZ - Bt - —,

@? - h2)? h.a h oh? a-h

1 1
by = 2 ~—1n & and (75)
a?-h® b? -
h{a-h} a 1 1 ath
(a® -h?)? a? -h% 21

The quadrature error for a fixed interval is 0fh*) while the truncation er-
ror in one step of length k is 0(k®) with the Runge-Kutta formula (see e.g.
Henrici [6]). The total error is thus O(k?*) + O(h*). Because of the prop-
erty C the error growth is at most linear in t,

It was found satisfactory to use the time step 0.01 and 10 sub-intervals

for x.

5. Discussion of vesults.

A quantity of main interest is the displacement ufa,i) of the inner sur-
face of the vessel, see Fig. 1.

, ulat)

w
1

u(a,o)

—>
>

Fig,1. The displacement Wa,t) of the inner sutface as function of the reansformed time T,

The displacement is oBtained} from equations (36), (38) and (54),

ua,t) = Ry . [T+ z(7] (76)
where
Z2/A
R = i —I_):a- _2. N / 77
® 4 E l c:2/)\ -1 ( ‘)
and
2¢2 £ y(s, 7)
z(T) = ] ds . (78)
et -1 g3
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The additional displacement W, due to statical primary creep, is obtained
from equations (56) and (57} if m> 0. {If m = 0 we have to use a numeri-
cal computation to obtain y_ .) For m > 0 we have W = R_ . [y” - 2(0)]
or

5 pa 5 c¥ - ¥ 2c”
W == L= ; - = if A4 2 (79 a)
4 E A{r-2) (c2/ A 1F o2-
and
3 pa c 2 2e .
W:—Ll—_f (’Cj)., h’lC—-T‘_ 1fA:2, (79 b)
cv -1
or expanded in terms of A = ¢ - 1
; (A-1)" )
wWe B ——a o). (80)
3.X

This result is not in complete agreement with the result of Rosengren [3]

L (=10 .
= ——— v, (81)
3.0°

3
Wizt = 4

obtained after solution by the perturbation method for thinwalled vessels.
b y(x7)
2.0

.8

o 1 2 3 & 5 & 7 7

Fig,2, Sccoudary creep.
The function y(x,7t) is given for x = 1,0, 1,2, 1,4, 1.5, 1,8, 1,5 and 2,0 and isrepresented by
solid curves, while z(7) is represented by a dashed curve. The parameters are m=0, n=2 and ¢ = 2,
giving vix,0) = x and 20) = 4,3, The computed value of vy, is 1,3987,
We are especially interested in how z(7) approaches the constant y_. For
m > 0 we obtain from (56) and (65) that this convergence is of the type
1/ 7, while the computations show an exponential convergence if m = 0. ln
figures 2 and 3 we give examples of this.
A very simple measure of the duration of the transicnt period is given
by the quantity 7° introduced by Hult [2] and defined from the rate of
growth of the inner radius (Fig.4.).
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e v(x7)
1.14
1.12
1.10
1,08
1.06
1,04

1.02

1.00

(=)
~Y

Fig.3. Primary creep.
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The function y(x,T) is given for x = 1.00, 1,02, 1.04, 1,05, 1.06, 1.08 and 1,10 and is repre-

sented by solid curves, while z(7) is represented by a dashed curve. The parameters are 1

n =8 and ¢ = 1.1, giving w(x,0) = x3/2, A0) = 1.072577 and v, = 1.074404,

A dulat)
or

>
rr 4

=1

Fig.4, The rate of growth of the inner radius with tespect to the transformed time = as function of 7.

Differentiating (76) we obtain

dufa,t) _
—or

R_. [1+2z(N],
and 7 is obtained from
7= - z'(0)/2"(0).

From (51)-(53) we get the following expression for the duration of the
sient period, expressed in seconds,

) m+
= 1 )J\.*JL( : )n-(mﬂ'; (m+2)
2 E K p,\/? (n1+L)|rl+')

(82)
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‘ N (84)
(l-c'"D‘ ). (1_0—2 )}\ _ )\l"?\ (1-c-2/) ) . (1—C"2 Y2+l I+l

5

¥

(1=c=2) (1-c24A) = (L-c-2r )

2a-1
It is essential that this t* has an immediate connection to half-life periods
only for m = 0, since it is only in this case ‘the function is exponential.
APPENDIX

In this appendix the results for the spherical case are given,
Definitions: ‘

1

() - 2 E

ot = 5 = re (85)
2-n .

6 = (m+l) ——— . K . po. (&)™ | ¢ (86)

(1_’u)l11+.l p
1 CS/)\
s 3 A-1

T=omh (- ) (87)

A C3/:\ 1

Differential equation

G(‘T) m+l
2 oo ) -
w[ 3‘“9—}(] g (33)
< . 3
Initial conditions
3c3
G(0) = —— (89)
e -1
_ (&3
1- )
olx,0) = ———. (90)
cd -1

The boundary conditions (46) and (47) remain unchanged.

G(m)
) ) o oolx, 7)
wix, )= - - X T (91)
g T oy, T
wix ’T):—\ — + - ox A (92)
S TR | %3 53
3cd ; i
G(1) =— (1 + j l‘_(‘}\_ﬁ dx) (93,
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The new initial value problem is defined by

C

o 3¢3 y(E, 7) 1
1+ X‘J+3/ 3 j dE - y(X, T)
C

-1 4
oy, 1) _ gy L 5 (94)

oT m
ot -

for 7 > 0,
yix, 0) = x3-3/x, and (95)
EY(Xa;TO) - . XS—S)\__ 1. (96)

The desired functions G(7) and o(x,7) are easily expressed in terms of
yix, 7).

[

. 3 c3/x 3c3 J Y(E:T)
G(7) = — , (r + dg) . (97)
A 3 1 c3—11 g4
Cy3/n
1 - (-X“) ! 3 03/"}\
o(x,T) = + <
cdh -1 Agan
1 : T
x* £ yE,7) y(€,7)
< f T dE —f p dE p (98)
1 - L 5 ' ’
3
L J
For m > 0 we obtain
1 e Iy
y(x,T) =y + l_+—7: %1_ {x“'b')‘ - Yo XJ BYDY }+ y“(x, 7-), (99)
where
. RS FEN S
Yoo 5 Tg it o2, (100 u)
U S |
and
; C3 2
[CAE
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with y*(x, 7) bounded as in the cylindrical case (eq. 64).
The additional displacement is given by

: 3 6/x 3
c’ - c 3c
1-u pa { 3 .

W = = . - if 242 (101 a)

2 E | AMA-2) 7 e 12 e3-1

and

1- a 9 c3 3c3
W:—?‘iPE— 7 ———.lmc-——1 ifa=2, (101 b)

(¢3/2 - 1)2 c3-~1

or expanded in terms of A = c¢-1

2
W= LoE o pa 3 A1)
*E " 4

A + 0(AZ). (102)
7L2

The time t* is given by Hult [2] in the spherical case.
For those who wish to solve equation (94) we give the corresponding qua-
drature coefficients for the evaluation of

a+h y(X)
— dx.
a-h
f . a’+4ah + 30
b'l = '3'h )
(a2 - h2)3
4 1
< b0 = -3;h —_—_— (103)
(a‘Z _ hZ)‘Z
. a? - 4ah + 3h?
bl = §h —:_"-3—
L . (a‘. N hZ)
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